What is Boron carbide

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



Boron carburide is a high-performance carbon compound, which is composed mainly of boron, carbon, and other elements. The chemical formula for B4C is B4C. It is used widely in the aerospace and military industries for its hardness and high melting point. The article will give a detailed description of the physical properties and chemical composition, the preparation methods, the performance characterization and its application fields. References for research in other fields are also provided.

Physical Properties

Boron carbide, a non-metallic inorganic material with a density of 2.52g/cm3, is a dense, inorganic substance. It has a cubic lattice structure, a dense black crystal and a 0.243nm lattice constant. Boron carbide exhibits a low electrical conductivity of only 10-6S/m, and has excellent insulation. Its thermal conductivity (97W/m*K) is lower than metals, silicon and ceramics but higher than glass and other materials.

Chemical properties

Boron carbide exhibits chemical stability, and it is not reactive to acids and alkalis. B4C is reactive with O2, H2O and other substances. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it suitable for use over a long period of time in corrosive and high-temperature environments.

Preparation method

Preparation methods for boron carbide The main methods are the carbon thermal decomposition method, the arc melting technique, and the chemical vapour deposit method.

Methode de réduction du carbothermal

Carbon thermal reduction (CTR) is widely used to prepare boron carbide . This method generates carbon dioxide and boron carburide by melting boric black and carbon. The reaction formula is B2O3+3C + B4C+CO. Reaction temperature is usually between 1500 and 1700°C. The method has the advantage of being simple, low-cost, and easy to use. However, the boron carbide produced is not of high purity.

Arc melting method

In the arc melting process, graphite electrodes are heated and melted in a reaction between boric acid or borax to create boron carbide. The reaction formula is B2O3 + 3C – B4C. The reaction temperature ranges between 1800 and 2000°C. This method yields boron-carbide with a high degree of purity and fine particles, but is costly and complicated.

Chemical vapour deposition method

Chemical vapour deposition uses the reaction of gaseous carbon black and borane at high temperature to create boron carburide. The reaction formula is B2H6+6C + B4C+6H2. The reaction temperature ranges between 1000-1200°C. This method yields boron-carbide with a high degree of purity and superfine particles, but is costly and complicated.

Performance Characterization

Physical, chemical, mechanical, and other properties are primarily considered when describing the performance of boron carbide.

Physical Property

Density, conductivity, thermal resistance, etc. are the main physical properties of Boron carbide. Density is 2.52g/cm3, conductivity 10-6S/m, and thermal conductivity 97W/m*K.

Chemical Property

Boron carbide exhibits chemical stability, and it is not reactive to acids and alkalis. B4C is reactive with O2, H2O and other substances. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it suitable for use over a long period of time in corrosive and high-temperature environments.

Mechanical property

Boron carbide’s high hardness, melting temperature, and heat transfer make it a popular material in many industries. Hardness of 3500kg/mm2, melting point 2450, and heat transfer rate 135W/m*K are among the characteristics that make boron carbide so popular in industries, military, aerospace, and other fields.

RBOSCHCO

RBOSCHCO, a global chemical material manufacturer and supplier with more than 12 years of experience, is known for its high-quality Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. RBOSCHCO, a leading manufacturer of nanotechnology products, dominates the market. Our expert team offers solutions to increase the efficiency of different industries, create value and overcome various challenges. Send an email if you’re looking for Boron Carbide to: sales1@rboschco.com